RASC - L2 Earth Observatory - Aperture Spacecraft														
Current Best Estimate							Future Best Estimate							
System	Source	Quantity	Total Mass CBE (kg)	Average Power CBE (W)	Peak Power CBE (W)	Comments	Source	Quan-tity	Total Mass FBE (kg)	Average Power FBE (W)	Peak Power FBE (W)	Technology SOA Date for FBE	Comments	Revisions
Payload	Subtotal		0	0	0	No science instruments on Aperture s/c	Subtotal		0	0	0		No science instruments on Aperture s/c	
Power	Subtotal		616	0	0		Subtotal		200	0	0			
000	Bob Cataldo/Tim Sarver Verhey		174				5111.00.00		000				Stirling Radioisotope Generators (SRG) with	
SRG Support Structure	7/14		474			Stirling Radioisotope Generators (SRG)	Ed Mettler 8/1	2	200				output of 2000We	
Cabling														
Shielding														
Thermal	Subtotal		18	142	142	Revised was 0	Subtotal		10	142	142			Revised Pk PRW
Heaters	David Steinfeld 9/15		1	122	122	Revised was 0	SMAD - 2 to 5% of dry mass		10	122	122		Assumed 2% of s/c bus dry mass (500kg)	
oop Heat Pipes			11	20	20	loop heat pipe operational controller heaters				20	20			
IVILI			3.5	U		1.0 m (g 0.1 ibm. 12 ibs				0				
Propulsion	Subtotal		490	1,005	1,985	Low thrust, continuous operation case	Subtotal		200	345	1,417		Low thrust, continuous operation case	Revised:E. Mettler
						Big Engines: 1.30 kW each for maximum operation of 2 engines; maximum thrust of 105							Big Engines: 1.30 kW each for maximum operation of 2 engines; maximum thrust of 70	
Large Thrusters	Tim Sarver Verhey 10/5	8	60	713	1,600	mN; 1675 seconds, 70% eff.	Tim Sarver-Verhey 10/5	8	28	238	1,300	2025-2030	mN; 9200 seconds, 90% eff.	Revised PK Pwr
T PPUs + cabling		8	104	1/25	150			8	66	50	55	2025-2030		Revised PK Pwr
plumbing		8	36	n/a				8	16	n/a		2025-2030		
						Small Engines: 250 W each for maximum thrust of 11.7 mN; 3000 second lsp; 70% eff.;							Small Engines: 250 W each for maximum thrust	
Small Thrusters		12	56	143	200	assumed two engines operating		12	28	48	50	2025-2030	of 2.7 mN; 8700 second lsp; 90% eff.	Revised Pk Pwr
T PPUs + cabling		4	88	25	35			4	33	10	12	2025-2030		Revised PK PWR
plumbing		4	48	n/a				4	8	n/a		2025-2030		
Prop Tank	-	1	64	n/a		5% tankage traction	-	1	5	n/a		2025-2030	2.5% tankage traction	
Propellant	Subtotal		1,284	0	0		Subtotal		194	0	0			
						Low thrust, continuous operation case - 3 year propellant load - case would not close with 5								
Propellant	Tim Sarver Verhey 9/24		1,284			year or longer load	Tim Sarver-Verhey 9/24		194					
CNC	Publish		40	450	250		Subtatal			444	420			
Give	Ed Mettler 10/3		43	130	230		Ed Mettler 10/3		21		133			
Formation Ka-Band Metrology	Ka-Band Transceiver & 4-Patch Antennae; one cm range, one arcminute bearing relative accuracy	2	4	2	2	Ongoing funded development for TPF. Relative Range & Bearing bt S/C	Advanced Ka-Band Transceiver & 4- Patch Antennae; 0.5-cm range, 0.5- arcminute bearing relative accuracy	2	1	1	1	2015	Reduced mass & power from further miniaturization/ integration of electronics chips and packaging technology	
Sun-Earth Limb Sensor	Similarity Ref is Questar-7 Maksutov Cassegrain Catadiophic: New design ia 0-4m Folded, 2-5m Focal length, 10-cm Dia, 1.0 Deg FOV Telescope w44065 Square CCD Detector & Digital Elect.	1	4	7	7	New Development needed for NAV function: Lightweight long local length Telescope, Large format CeCo To tr -4 2 microradian resolutiopn, w internal delector and electronics Redundancy	Similarity Ref is Questar-7 Maksutov Cassegrain Catadioptic: Advance lightweight design is 0.4-m Folder Deg FOV Telestone widdle Stol.0ar CMICS APS Detector, on-chip processing, Redundant internal detectors & electronics	1	2	2	3	2015	Athermalized Lightrweight Structure & Optical Train of Tianium or Silicon Carbide or Berylium barrei and Lens Cells, BK-7, Zerodour, Pyrex, coated lens and mirrors, Heat rejection filters.	
Star Cameras & electronics	(4) Star Camera Heads plus (2) Electronics, CCD Detectors	1 Set	3	4	4	DTU Adv Stellar compass; Orsted, SAC-C, ADEOS 11, CHAMP	(4) Star Camera Heads pius (2) Electronics, Adv. CMOS APS Detectors w/on-chip processing	1 Set	2	2	3	2015	miniaturization/integration of electronics & packaging and APS tech.	
IMUs	Litton SIRU HRG, Internal Redundant Gyros/Accels, Electr.	1	5	27	27	Cassini; EOS AURA, CHEMISTRY: Bias Stability 0.003 deg/hr, R-W 0.0001 deg/rt-hr	SIRU, Internal Redundant Gyros/Accels, Electr.	1	1	4	4	2015	miniaturization/ integration of electronics chips and packaging technology	
Coarse Sun Sensors	EDO-Barnes 0.7 Deg Accuracy	4	1	1	1	FOV: 128 X 128 Deg Acquisition Sensor	detector tech, 0.2 Deg Accuracy	4	1	1	1	2015	1000 format APS w/on-chip processing	
Reaction wheels & drive elecronics	SMEX (Clagget) 4 Nms; 0.14 Nm	4	16	8	60	TRACE, WIRE, SWAS	Adv lightweight low power version SMEX (Clagget) 4 Nms; 0.14 Nm	4	5	3	15	2015	High speed low mass composite rotors on magnetic bearings & miniaturized lower power electronics	
iezo Control Devices or Membrane Shape	Piezo MEMS, Inchworms & PVDF Thin Film Electrode Patterns	45K MEMS for Average of 100 per sq. meter	See areal density under structures	90	100	Tech devel. In early stage with working small scale Lab models	Piezo MEMS, Inchworms & PVDF Thin Film Electrode Patterns	45K MEMS for Av of 100 per sq. meter	See areal density under structures	90	100	2020	Assumed Tech advanced to large scale fabrication stage with precursor 10-m or larger dia flight experiments	Revised all values for both CBE & FBE
nterface Electronics for GNC Sensors & ctuators, and RIU to Main Data Bus	I/O cards for Data I/F w C&DH Main Bus via RIU; Analog & digital I/O; A/D, D/A conversions; house keeping sensors; I/F w/ EP Thrusters Control and Metrology	4	2	2	2	All data channels are redundant. Mil-Std 1553B assumed for main data handling bus architecture, and distributed subsystem microprocessors IF via RIU's (remote interface units); GNC LAN architecture assumed.	I/O 3-D modules for Data I/F w C&DH Main Bus via RIU; Analog & digital I/O; A/D, D/A conversions; house keeping sensors; I/F w/ EP Thrusters Control and Metrology	1	1	1	1	2015 - 2020	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
GNC Computers	Adv BAE SFC	2	1	5	26	Next Gen RAD 750 Microprocessor	3-D Ultra-Thin Chip Scale Integration SFC-Internal multi- Redundant w/ autonomous reconfiguration mngt.	1	1	2	5	2015 - 2020	Nanoscale Flight Computer w/ IC feature size <10 nm & ~ 9 Giga Gates/chip; 3-D Sugar Cube packaging architecture	

Non Volatile Memory	RAM NVM	4	4	2	6	12 GBIT Data per Card	Next Generation NVM RAM: FRAM, MRAM, CRAM Options	1	1	1	2	2015	Feature size 22 nm, 64GBit Data per Module, Non-volatile and Dynamic Random-Access	
DTCI I/F	Data, TLM, CMD, EP, Star Cameras Interfaces	2	1	3	7		3-D Ultra-Thin Chip Scale Integration- Internal Redundant w/ autonomous reconfiguration mng*t.	1	1	1	1	2015	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
CMIC I/F	Heartbeat, Sys Reset Tr, A/B Side Selects	2	1	1	2		3-D Ultra-Thin Chip Scale Integration- Internal Redundant w/ autonomous reconfiguration mng't.	1	1	1	1	2015	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
ULDL I/F	RS-422 Data I/F to like units	2	1	2	8		3-D Ultra-Thin Chip Scale Integration- Internal Redundant w/ autonomous reconfiguration mng't.	1	1	1	1	2015	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
GIF I/F	Discrete I/O, Mil-Std 1553B I/F	2	1	3	5		Ultra-high speed Duplex-Redundant Data bus	1	1	1	1	2015	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
Backplane	6U cPCI	2	3				New Generation 3-D redundant architecture	1	1			2015	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
Chassis	Aluminum Enclosure	1	4				Compact 3-D Al enclosure	1	1			2015		
Subsystem Shielding	GNC: I BD for Solar Energetic Particles over 10 years		TBD			Need Environmental-Equipment Analysis	GNC: TBD for low susceptability		TBD				Robust parts & packaging technologies	
Comm	Subtotal		31	12	30		Subtotal		22	6	15			
S-Band transceiver	Fred Stillwagen 12/5	2	6	6	15	for commands and health/status telemetry	Fred Stillwagen 12/5	2	3	3	7.5	2012	for commands and health/status telemetry	
S-band patch dipole antenna	-	2	1	0	0	for full coverage on uplink	-	2	1	0	0	2012	for full coverage on uplink	
UHF transponder		2	6	6	15	for crosslink communications with science spacecraft		2	3	3	7.5	2012	for crosslink communications with science spacecraft	
Quadrafilar UHF Helix antenna		1	8	0	0	to allow redundant crossover communications capability (S-band, UHF and X-Band)		1	5	0	0.0	2012	to allow redundant crossover communications capability (S-band, UHF and X-Band)	
Misc Cables, switches,		1	10	0	0			1	10	0	0			
C&DH	Subtotal	<u> </u>	12.32	17.5	20	redundant C&DH is a cold spare	Subtotal		6	10.35	12		redundant C&DH is a cold spare	
CPU Board	Quang Nguyen/Ken McCaughey 10/17	2	1.4	8	20	BAE RAD 750 SBC - 133 MHz	Quang Nguyen / Ken McCaughey 10/17	2	0.8	5	12	2020	BAE tech. roadmap - 500 MHz	
House Keeping		2	2	2				2	0.6	2				
Network I/F Board		2	2	3		Spacewire, mult Buses - 100 Mbps		2	0.6	2			Spacerwire - 100 Mbps	
Low Voltage Power		2	2	3.5		75% efficiency		2	1.0	1.35			85% efficiency	
Backplane	"	2	1.4	0				2	1.0	0				
Chassis		2	3.52	0		40% of total mass		2	2.0	0			50% of total mass	
Structure	SUDIOIAI	1	3,363	U	U	Accument 128/ of e/a bus wat more (ECO0ka)	Subtotal	4	545	U	U		Assumed CP/ of a/a hus wet mass (1200kg)	
Spacecraft bus	CRE for Membranes	1	2 260			5 kn/m2(452m2 area per IDEAS model)	Ed Mettler 8/1	1	452				Assumed 6% or s/c bus wet mass (1200kg)	
Membrane Support			2,200			Inflatable and rigidizable support rings and			102				support structure included with membrane	
Vibration Damping	Chris Strickland	1	200			struts using 1kg/m ² areal density	Chris Strickland	1	0				assumption	
Secondary Structure	Chris Strickland	1	207			secondary structure listed	Chris Strickland	1	21				secondary structure listed	
	Total Dry Mass (kg)		4,578	1,333	2,433	Total Power (W)	Total Dry Mass (kg)		1,003	614	1,725		Total Power (W)	
	Total Wet Mass (kg)		5,862				Total Wet Mass (kg)		1,197					
													•	

Mass Summary (CBE)									
System	Mass (kg)								
Payload	0								
Power	616								
Thermal	18								
Propulsion	490								
Propellant	1,284								
GNC	49								
Comm	31								
C&DH	12								
Structure	3,363								
Total Dry Mass (kg)	4,578								
Total Wet Mass (kg)	5,862								

	Power Summary (CBE)									
System	Avg Power (W)	Peak Power (W)								
Payload	0	0								

Mass Summary (FBE)								
System	Mass (kg)							
Payload	0							
Power	200							
Thermal	10							
Propulsion	200							
Propellant	194							
GNC	21							
Comm	22							
C&DH	6							
Structure	545							
Total Dry Mass								
(kg)	1,003							
Total Wet Mass								
(kg)	1,197							

Power Summary (FBE)										
	Avg Power									
System	(W)	Peak Power (W)								
Payload	0	0								

Total Power (W)	1,333	2,433	PK Pwr Revised
Structure	0	0	
C&DH	18	20	1
Comm	12	30	1
GNC	156	256	1
Propellant	0	0	1
Propulsion	1,005	1,985	Revised
Thermal	142	142	Revised
Power	0	0	

Total Power (W)	614	1,725	Revised
Structure	0	0	
C&DH	10	12	
Comm	6	15	
GNC	111	139	Revised
Propellant	0	0	
Propulsion	345	1,417	Revised
Thermal	142	142	Revised
Power	0	0	

'otal for 70mN PK total thrust Req'd & 90% Efficiency. See simulations

	RASC - L2 Earth Observatory - Science Spacecraft														
	Current Best Estimate								Future Best Estimate						
System	Source	Quan- tity	Total Mass CBE (kg)	Average Power CBE (W)	Peak Power CBE (W)	Comments	Source	Quan- tity	Total Mass FBE (kg)	Average Power FBE (W)	Peak Power FBE (W)	Technology SOA Date for FBE	Comments	Revisions	
Payload	Subtotal	1	300	300	0		Subtotal		100	90	120	2015-2020	Advanced electronics miniaturization		
SWIR	J. Zawodny	1	100	100			Ed Mettler 8/1	1	33	30	40	2015-2020	and low power devices		
Mid-IR		1	100	100				1	33	30	40	2015-2020			
Power	Subtotal		616	0	0		Subtotal		300	0	0				
	Bob Cataldo/Tim Sarver Verhey		0.0				oubtotal				-		Stirling Radioisotope Generators (SRG) with		
SRG Support Structure	7/14		474			Stirling Radioisotope Generators (SRG)	Ed Mettler 8/1	2	300				output of 3000We		
Cabling			142												
Shielding															
Heaters	David Steinfeld 9/15		23	190	0	s/c bus + electronics heaters	SMAD - 2 to 5% of dry mass		20	190	190		Assumed 2% of s/c bus dry mass (1000kg)	Added pk power	
Heat Pipes			11	20		loop heat pipe operational controller heater	s			20	20				
MLI	•		10.5	0		231 ft2 @ 0.1 lb/ft2: 23 lbs				0	0				
Propulsion	Subtotal		404	1,005	0	Low thrust, continuous operation case	Subtotal		200	1,408	1,408		Low thrust, continuous operation case		
						Big Engines: 1.25 kW each for maximum							Big Engines: 1.3 kW each for maximum		
Large Thrusters	Tim Sarver Verhey 10/5	8	60	713		mN; 2500 seconds, 70% eff.	Tim Sarver-Verhey 10/5	8	28	1,300	1,300	2025-2030	70 mN; 9200 seconds, 90% eff.	E. Mettler, 01-22-04	
LT gimbals		8	26	n/a				8	14	n/a	E0.	2025-2030		added Pk power	
plumbing		8	36	125 n/a			*	8	16	50 n/a	50	2025-2030			
						Small Engines: 250 W each for maximum thrust							Small Engines: 250 W each for maximum thrust	t	
Small Inrusters ST standoffs		12	36	143 n/a		of 7.8 mN; 4500 second lsp; 70% eff.		12	28	48 n/a	48	2025-2030	of 2.7 mN; 8700 second Isp; 90% eff.		
ST PPUs + cabling		4	50	25				4	33	10	10	2025-2030			
plumbing		4	30	n/a				4	8	n/a		2025-2030	0.5% hadres for the		
Ргор Тапк		1	58	n/a		5% tankage fraction		1	5	n/a		2025-2030	2.5% tankage fraction		
Propellant	Subtotal		1,152	0	0		Subtotal		194	0	0				
Propellant	Tim Sarver Verhey 9/24		1,152			Low thrust, continuous operation case - w/6 year propellant supply	Tim Sarver-Verhey - 9/24		194						
						Case would not close for 10 year propellant case for vehicle masses less than 10 tons.									
GNC	Subtotal		79	99	213		Subtotal		36	38	65				
	Ed Mettler 10/3						Ed Mettler 10/3								
Coarse Sun Sensors	EDO-Barnes 0.7 Deg Accuracy	4	1	1	1	FOV: 128 X 128 Deg Acquisition Sensor	Advanced Tech Version: APS detector tech, 0.2 Deg Accuracy	4	1	1	1	2015	1000 format APS w/on-chip processing		
Formation Ka-Band Metrology	Ka-Band Transceiver & 4-Patch Antennae; one cm range, one arcminute bearing relative accuracy	2	4	2	2	Ongoing funded development for TPF. Relative Range & Bearing bt S/C	Advanced Ka-Band Transceiver & 4- Patch Antennae; 0.5-cm range, 0.5- arcminute bearing relative accuracy	2	1	1	1	2015	Reduced mass & power from further miniaturization/ integration of electronics chips and packaging technology		
Formation Optical						Ongoing funded development for TPF. Relative							integration of electronics packaging & Internal		
Metrology	Laser Transceiver & Platform	2	10	10	20	Range & Bearing bt S/C	Internal Redundant Laser Transceiver	1	6	7	7	2015	Redundancy		
Two small telescope sensors: Sun-Earth Limb (SEL) Sensor, and Primary Mirror Center-of-Curvature (COC) Sensor	Similarity Ref is Questar-7 Maksutov Cassegrain Catadioptirc: New design is 0.4-m Folded, 2.5-m Focal length, 10-m Dia, 1.0 Deg FOV Telescope w/4096 Square CCD Detector & Digital Electr.	2	8	14	14	New Development needed for NAV function: Lightweight long focal length Telescope, Large format CCD for ~4.2 microradian resolution, w internal detector and electronics Redundancy	Similarity Ref is Quester-7 Maksutoy Casaygrain Catadioptic: Advance lightweight cessing is 0.4-m Folded, 2.5-m Focal length, 10-om Dia, 1.0 Deg FOV Telescope wi4006 Square CMOS APS Detector, on-chip processing, Redundant internal detectors & electronics	2	4	4	6	2015	Athermatized Lightweight Structure & Optical Train of Tianium or Silcon Carbide or Berylium barrel and Lens Cells, SK-7, Zerodour, Pyrex, coated lens and mirrors, Heat rejection filters.	Revised CBE and FBE values for added COC Sensor	
Star Cameras & electronics	(4) Star Camera Heads plus (2) Electronics, CCD Detectors	1 set	3	4	4	DTU Adv Stellar compass; Orsted, SAC-C, ADEOS 11, CHAMP	(4) Star Camera Heads plus (2) Electronics, Adv. CMOS APS Detectors w/on-chip processing	1 Set	2	2	3	2015	Reduced mass & power from further miniaturization/integration of electronics & packaging and APS tech.		
IMU	Litton SIRU HRG, Internal Redundant Gyros/Accels, Electr.	1	5	27	27	Cassini; EOS AURA, CHEMISTRY: Bias Stability 0.003 deg/hr, R-W 0.0001 deg/rt-hr	SIRU, Internal Redundant Gyros/Accels, Electr.	1	1	4	4	2015	miniaturization/ integration of electronics chips and packaging technology		
Reaction wheels & drive electronics	SMEX (Clagget) 4 Nms; 0.14 Nm	4	16	8	60	TRACE, WIRE, SWAS	Adv lightweight version SMEX (Clagget) 4 Nms; 0.14 Nm	4	5	3	15	2015	High speed low mass composite rotors on magnetic bearings & miniaturized lower power electronics		
Telescope Rotation Drive Motor & Electronics	2-Phase DC Torque Motor w/ 12-Bit Absolute Optical Encoder	1	3	4	8	Redundant Motor Windings, Encoders, Commutation & Drive Electronics	2-Phase DC Torque Motor w/ 12-Bit Absolute Optical Encoder	1	2	3	6	2015	Reduced mass/power from Higher efficiency magnetic materials & electronics miniaturization		
						Integral Electronics; Aligned to Telescope Spin							High speed low mass composite rotors on		
Momentum Wheel/Drive Electr.	For Telescope Momentum Cancellation	1	10	10	20	Bearing Axis; Higher speed counter-rotating rotor	For Telescope Momentum Cancellation	1	5	5	10	2015	magnetic bearings & miniaturized lower power electronics		
Interface Electronics for GNC Sensors & Actuators, and RIU to Main Data Bus	I/O cards for Data I/F w C&DH Main Bus via RIU; Analog & digital I/O; A/D, D/A conversions; house keeping sensors; I/F w/ EP Thrusters Control and Metrology	8	3	3	3	All data channels are redundant. Mil-Std 1553B assumed for main data handling bus architecture, and distributed subsystem microprocessors I/F via RIU's (remote interface units); GNC LAN architecture assumed.	I/O 3-D modules for Data I/F w C&DH Main Bus via RIU; Analog & digital I/O; A/D, D/A conversions; house keeping sensors; I/F w/ EP Thrusters Control and Metrology	1	1	1	1	2015 - 2020	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture		

GNC Computers	Adv BAE SFC	2	1	5	26	Next Gen RAD 750 Microprocessor	3-D Ultra-Thin Chip Scale Integration SFC- Internal multi- Redundant w/ autonomous reconfiguration mng*t.	1	1	2	5	2015 - 2020	Nanoscale Flight Computer w/ IC feature size <10 nm & ~ 9 Giga Gates/chip; 3-D Sugar Cube packaging architecture	
Non Volatile Memory	RAM NVM	4	4	2	6	12 GBIT Data per Card	Next Generation NVM RAM: FRAM, MRAM, CRAM Options	1	1	1	2	2015	Feature size 22 nm, 64GBit Data per Module, Non-volatile and Dynamic Random-Access	
DTCI I/F	All Digital Data, TLM, CMD, EP, Star Cameras Interfaces	2	1	3	7		3-D Ultra-Thin Chip Scale Integration- Internal Redundant w/ autonomous reconfiguration mng't.	1	1	1	1	2015	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
CMIC I/F	Heartbeat, Sys Reset Tr, A/B Side Selects	2	1	1	2		3-D Ultra-Thin Chip Scale Integration- Internal Redundant w/ autonomous reconfiguration mng't.	1	1	1	1	2015	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
ULDL I/F	RS-422 Data I/F to like units	2	1	2	8		3-D Ultra-Thin Chip Scale Integration- Internal Redundant w/ autonomous reconfiguration mng't.	1	1	1	1	2015	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
GIF I/F	Discrete I/O, Mil-Std 1553B I/F	2	1	3	5		Ultra-high speed Duplex-Redundant Data bus	1	1	1	1	2015	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
Backplane	6U cPCI	2	3				New Generation 3-D redundant architecture	1	1			2015	Advanced 3-D stacked lowpower microchip technology or SUGAR CUBE architecture	
Subsystem Shielding	GNC: TBD for Solar Energetic Particles over 10 years	1	4 TBD			Need Environmental-Equipment Analysis	GNC: TBD for low suscentability	1	1			2015		-
Comm	Subtotal		45	89	248		Subtotal		26	52	149			
Power Amp	Fred Stillwagen 12/5	2	6	65	200	100 Watt Tx Power	Fred Stillwagen 12/5	2	3	40	125	2.025		
X-Band telemetry transceiver		2	6	12	18			2	3	6	9	2,025	(QPSK modulation, operating at ~100 MBPS)	
1 meter inflatable antenna and gimbal		1	2	0	0	(.53kg/m^2), including feed)		1	2	0	0	2,020	(.53kg/m^2), including feed)	
S-Band transceiver		2	6	6	15	for commands and health/status telemetry	-	2	3	3	7.5		for commands and health/status telemetry	
S-band patch dipole antenna		2	1	0	0	for full coverage on uplink	n	2	1	0	0	2,012	ior commando and realitroated telemotry	
UHF transponder		2	6	6	15	for crosslink communications with aperture spacecraft		2	3	3	7.5		for crosslink communications with aperture spacecraft	
Misc. cables, switches, components		1	10	0	0			1	5	0	0	2,012		
Quadrafilar UHF Helix antenna		1	8	0	0	to allow redundant crossover communications capability (S-band, UHF and X-Band)	н	1	6	0	0	2 020		
C&DH	Subtotal		20.16	28.75	31	redundant C&DH is a cold spare	Subtotal		9.80	18.40	20		redundant C&DH is a cold spare	
1							Quang Nguyen / Ken McCaughey							
CPU Board House Keeping	Quang Nguyen/Ken McCaughey 10/17	2	1.4	8	31	BAE RAD 750 SBC - 133 MHz	10/17	2	0.8	6	20	2020	BAE tech. roadmap - 0.5 to 1 GHz	
Board		2	2	3				2	0.6	2				
Mass Memory Boards		2	5	8		AiR S290 x4, 1 active - 2000 Gb		2	3.0	5			Non-volatile mem banks - 2000 Gb	
Network I/F Board		2	2	4		Spacewire, mult buses - 100 Mbps		2	0.6	3			Spacerwire - 1 Gops	
Low Voltage Power		2	2	5.8		75% emciency		2	1.0	2.40			65% eniciency	
Choseie		2	2.0	0		40% of total mass		2	1.0	0			40% of total mass	
Chassis	Subtotal	2	5.70	20	00	40 % OF LOCAL MIASS	Subtotal	2	2.8	20	60		40 % OF LOCAL MIASS	
Structure	SMAD 9 to 12% of web.	1	1,124	30	90	Assumed 10% of e/e hus unit mass (0700))	SMAD 9 to 42% of wet a set	1 1	314	20	60		Assumed BI/ of ala hus wet mass (1000)	
Spacecran bus	Ed Mottler 9/1	1	300			Potating telescope section	Ed Mottler 9/1	1	90				Rotating telescope section	
Casesdan, Shu	Chris Chiekland	1	300			Involating telescope section	Chris Christiand	1	100				involating telescope section	
Secondary Structure	Chris Strickland	1	240			22# / B) for Shuttle tiles, accume 0.25m	Chris Strickland	1	38				secondary structure listed	
Spin/Despin Rotary	Chris Strickland/ D I Caldural	1	100	30	90	scaled present day spin/despin motors on	Chris Strickland (D I Caldural	1	50	20	60		50% reduction due to specific design for	
Drive	Grins Stricklaho/ D3 GaluWell		100	30	90	spaced all comparing supported mass	Grina Strickland/ DJ Galdwell	-	50	20	00		anticipateu ioaus anu speed	
		-												
1														
	Total Dry Mass (kg)		2,610	1,762	582	Total Power (W)	Total Dry Mass (kg)		1.005	1.836	2.032		Total Power (W)	
	Total Wet Mass (kg)		3 762	.,	001		Total Wet Mass (kg)		1 199	1,000	2,002			
	Total Wet mass (kg)		3,102				forur free mass (kg)		1,135					

Mas	ss Summary (CBE)
System	Mass (kg)
Payload	300
Power	616
Thermal	23
Propulsion	404
Propellant	1,152
GNC	79
Comm	45
C&DH	20
Structure	1,124
Total Dry Mass (kg)	2,610
Total Wet Mass (kg)	3,762

Mass Summary (FBE)							
System	Mass (kg)						
Payload	100						
Power	300						
Thermal	20						
Propulsion	200						
Propellant	194						
GNC	36						
Comm	26						
C&DH	10						
Structure	314						
Total Dry Mass (kg)	1,005						
Total Wet Mass (kg)	1,199						

	Power S	summary (CBE)
System	Avg Power (W)	Peak Power (W)
Payload	300	0
Power	0	0
Thermal	210	0
Propulsion	1,005	0
Propellant	0	0
GNC	99	213
Comm	89	248
C&DH	29	31
Structure	30	90
Total Power (W)	1,762	582

Power Summary (FBE)			
System	Avg Power (W)	Peak Power (W	
Payload	90	120	
Power	0	0	
Thermal	210	210	
Propulsion	1,408	1,408	
Propellant	0	0	
GNC	38	65	
Comm	52	149	
C&DH	18	20	
Structure	20	60	
Total Power (W)	1,836	2,032	